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1. Introduction

The Bayesian automatic adaptive quadrature

(Baaq) [1, 2] of the Riemann integral

I ≡ Iab[f ] =

∫ b

a

f(x)dx, −∞ < a < b < +∞ (1)

yields a pair {Q,E > 0} representing a globally

adaptive numerical solution within the non-negative

input accuracy specifications {εr > 0, εa ≥ 0},

hopefully satisfying the termination criterion,

|I − Q| < E < max{εr|I|, εa} ≈ max{εr|Q|, εa}.

To this aim, the quantities Q and E are computed

merging rigorous mathematical criteria for the con-

trol of the output quality with the reality of the

hardware and software environments, within an ap-

proach based on two pillars:

(1) A subrange subdivision strategy of the inte-

gration domain [a, b] implementing the ordering of

the generated subranges into a priority queue.
(2) Sets of convenient local quadrature rules

which yield, over each subrange [α, β] ⊆ [a, b], a

local pair {q, e} for the quadrature sum q and its

associated local error estimate e > 0, respectively.

The global pair terms Q and E are obtained as

sums of q and e over subranges.

The present report summarizes the progress

achieved along two distinct lines:

(i) The derivation of quantitative conditioning

criteria establishing admissible rates of variation of

the integrand f(x) inside monotonicity intervals.

(ii) The possibility to exploit the opportunities of-

fered by the multi-core computing architectures for

sharpening the local error estimates over subranges.

2. Quantitative conditioning criteria

over strict monotonicity intervals

One of the reasons preventing the derivation of a

numerical local quadrature rule output within pre-

scribed accuracy stems from the occurrence, over

the strict monotonicity intervals, of fast integrand

variations which are in excess of the bounds follow-

ing from those enforced by the interpolatory poly-

nomials spanning the involved quadrature sums.

There are two pieces of information which enter

the derivation of conditioning criteria enforcing the

fulfillment of such bounds by subrange subdivision:

• The integrand profile over the integration

(sub)range of interest [α, β] ⊆ [a, b], which collects

the computed integrand values over this range,

{(xµ, fµ), µ = 0, · · · ,M |α = x0 < · · · < xM = β}

(2)

• The floating point degree of precision (fpdp),

dfp, which supersedes the usually assumed algebraic
degree of precision, d, of a quadrature sum [3, 4].

Given the discrete integrand sampling (2), strict
monotonicity intervals [xλ, xλ+Λ],

xλ < xλ+1 < · · · < xλ+Λ (3)

are defined from the condition of the sign constancy
of the floating point differences δk,k+1 = fk+1 − fk

which give the integrand variation inbetween suc-

cessive abscissas xk and xk+1, i.e.,

δk−1,k · δk,k+1 > 0, ∀k ∈ {λ + 1, · · · , λ + Λ − 1}.

The left end xλ > x0 = a of the integrand pro-

file (2) defines a local extremum of f(x) provided

δλ−1,λ · δλ,λ+1 < 0. Then we say that [xλ, xλ+Λ] is

closed to the left.
Otherwise, if δλ−1,λ · δλ,λ+1 = 0, then there is a

plateau of f(x) to the left of xλ and we say that

[xλ, xλ+Λ] is open to the left.
If xλ = x0 = a, then the integrand function f(x)

is undefined at x < a. In this case, we also say that

the strict monotonicity interval [x0, xΛ] is open to

the left.

Similar definition hold with respect to the right

end xλ+Λ.

With this preparative at hand, we characterize

the sequence (3) as follows:

– closed if both xλ and xλ+Λ are extrema of f(x);

– open if neither xλ nor xλ+Λ are extrema of f(x);

– closed to the left if xλ is an extremum, while xλ+Λ

is not;

– closed to the right if xλ+Λ is an extremum, while

xλ is not.

There are three kinds of quantities which enter,

directly or indirectly, the conditioning criteria:

1. The first order divided difference,

dk−1,k = δk−1,k/(xk − xk−1), (4)

which approximates the slope of f(x) over

(xk−1, xk).
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2. The second order divided difference,

dk−1,k,k+1 = (dk,k+1 − dk−1,k)/(xk+1 − xk−1), (5)

which approximates the curvature of f(x) over

(xk−1, xk+1).

3. The max-norm bound, νB, which defines a char-

acteristic sensitivity threshold of the Bayesian in-

ferences over strict monotonicity intervals,

νB = max{νd, νfp}, (6)

νd = max
1≤µ≤M

(xµ − xµ−1)

νfp = (β − α)/(dfp − 1).

Bayesian inferences on the integrand conditioning

over (3) can be drawn provided its ends are isolated
from each other. This condition is assumed to be

satisfied provided it is possible to define over (3)

two second order divided differences dγ−2,γ−1,γ and

dδ,δ+1,δ+2 such that δ ≥ γ. This definition results in

the condition Λ ≥ λ + 4, i.e., that the strict mono-

tonicity interval extends over five consecutive ab-

scissas at least.

The derivation of quantitative conditioning crite-

ria over the strict monotonicity interval (3) is en-

abled by the following well-conditioning Ansatz:
Ansatz. Let {xk−1 < xk < xk+1} denote an

ordered triplet inside the set with isolated end-

points (3).

(a) If xk+1 − xk−1 < νB, then the expected rate

of variation of a well-conditioned integrand over

[xk−1, xk+1] cannot exceed that of a second degree

polynomial.

(b) If xk+1−xk−1 ≥ νB, then this rate of variation

cannot exceed that of a third degree polynomial.

The use of this well-conditioning Ansatz enabled

the derivation [5] of several consistency criteria in-

volving distinctly the inner points and the endpoints

of the strict monotonicity interval (3).

For Baaqs spanned by orthogonal polynomials,

the statement (a) of the Ansatz covers the densely

sampled regions around the ends of every sub-

range [α, β] ⊆ [a, b], while the statement (b) covers

the sparsely sampled regions around the centre of

[α, β] ⊆ [a, b].

A straightforward consequence of this well-

conditioning Ansatz is the enforcement of two-sided

bounds to the ratios of the slopes of the integrand

over (xk−1, xk) and (xk, xk+1) inside each triplet of

interest. Let

Dk = |dk,k+1|/|dk−1,k|, ρk = (xk+1−xk)/(xk−xk−1).

Inside a densely sampled region, the integrand is

well-conditioned provided one of the following two

criteria is satisfied:

(a1) If Dk > 1 then 1 < Dk < 2 + ρk.

(a2) If Dk < 1 then 1 < D−1

k < 2 + ρ−1

k .

Inside a sparsely sampled region, the integrand is

well-conditioned provided one of the following two

criteria is satisfied:

(b1) If Dk > 1 then 1 < Dk < 3 + 3ρk + ρ2
k.

(b2) If Dk < 1 then 1 < D−1

k < 3 + 3ρ−1

k + ρ−2

k .

3. Sharpening local error estimates

using redundancy in the Baaq

For almost six decades, the main stream of the

hardware development for scientific computing es-

sentially followed the von Neumann model based

on a single central processing unit (CPU). The se-

quential algorithms developed for the von Neumann

computer were implemented into software reaching

a high level of optimization.

The last decade marked, however, an essential

shift of paradigm, such that the newly produced

hardware for scientific computing consists nowadays

exclusively of multi-core processors, possibly sup-

plemented with GPU accelerators.

The Baaq approach to the numerical solution of

the integrals can get substantial benefit from the

possibilities offered by the new hardware architec-

ture to improve both the algorithm accuracy and

the speed of computations. The recent proposal [6]

dealt with a modification of the paradigm concern-

ing the implementation of the local quadrature rules

using redundancy.

Within the previous approach to the automatic

adaptive quadrature [7], in order to get the pair

{q, e} over the current subrange [α, β] ⊆ [a, b], two

embedded symmetric quadrature sums, q2n,αβ [f ]

and qn,αβ [f ], are used. Then the more accurate ap-

proximation q2n,αβ [f ] is taken for the value of the

integral Iαβ [f ], while the modulus of the reminder

|Iαβ [f ] − q2n,αβ [f ]| is estimated from the difference

|q2n,αβ [f ] − qn,αβ [f ]| using probabilistic/heuristic
arguments. On one side, there is compelling em-

pirical evidence that, for most problems asking the

solution of (1), the obtained local error estimates are

too conservative. On the other side, the fact that

the quadrature knots of qn,αβ are a subset of q2n,αβ

is an important source of pitfalls concerning the re-

liability of the inferences based on the use of such

an error estimate, which was amply documented in

the literature.

The new proposal for the Baaq local error es-

timate starts with two unrelated to each other

quadrature sums over [α, β] ⊆ [a, b]:

•

qCC,αβ [f ] =

∫ β

α

pCC,αβ(x) dx

where pCC,αβ(x) is the interpolatory poly-

nomial which equates the integrand f(x) at
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the reduced Clenshaw-Curtis (CC) quadrature

knots defined as the extrema of the Chebyshev

polynomial of the first kind T32(ξ) over [−1, 1];

•

qGK,αβ [f ] =

∫ β

α

pGK,αβ(x) dx

where pGK,αβ(x) is the interpolatory polyno-

mial which equates f(x) at the reduced Gauss-

Kronrod (GK) 10-21 quadrature knots over

(−1, 1) [7].

The local quadrature rule pair {q, e > 0} is then

obtained from qCC and qGK guided by the following

considerations.

The choice

q = qCC,αβ [f ] (7)

is made based on the observation that the interpo-

latory polynomial pCC,αβ(x) lies close to the mini-

max approximating polynomial of f(x) everywhere

inside [α, β], while the deviation of the interpolatory

polynomial pGK,αβ(x) from f(x) may get large inbe-

tween the successive quadrature knots. Moreover,

the algebraic degree of precision of qCC, dCC = 32,

is slightly larger than that of qGK, dGK = 31.

The choice

e = max{|qCC,αβ [f ] − qGK,αβ [f ]|, ε0 · qtr,αβ [|f |]},

(8)

is made based on the statistical independence of

the quadrature knots of qCC and qGK, which share

a single common abscissa, the centre γ = (β + α)/2

of [α, β]. The last term entering (8) is the prod-

uct between ε0, the machine epsilon with respect

to addition, and qtr,αβ [|f |], the integral over [α, β]

of |f(x)|, the modulus of f(x), computed by means

of the trapeze rule using the mesh consisting of the

union of the quadrature knots of qCC and qGK over

[−1, 1].

Within a multi-core hardware environment, the

computation of f(x) at the CC and GK abscissas,

as well as of the quadrature sums qCC, qGK, qtr may

be done independently on different cores, such that

the redundant addition of supplementary quadra-

ture knots does not result into sizable increase of the

computing time of the local quadrature rule pairs

{q, e} over subranges.

Two main advantages are immediate. First, the

expression (8) secures a substantial sharpening of

the local error estimates, hence quicker end of the

global computation. Second, this secures a substan-
tial enrichment of the statistics enabling Bayesian

inferences on the integrand conditioning over the

subranges characterized by slow convergence of the

local quadrature rules under subrange subdivisions.
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